The GcMAF Book

Chapter 5

Your Immune Cells Versus The Pathogen Army: A Nanoscale War

About the nano-scale war fought inside us. Some important features of cancer cells. It’s the cancer army vs our immune army. How macros tell friend from foe. Macrophages are the ultimate fighting machine, but they’re naturally indolent and remain idle without GcMAF activation. Nagalase, made by cancer cells and viruses, puts macrophages to sleep by blocking GcMAF production. Without GcMAF, macrophages remain comatose. GcMAF injections bypass Nagalase, re-activate the macros, and this jump-starts the entire immune system.

What is cancer?

Cancers are made up of cells that carry damaged genes. These cells have stopped cooperating with the rest of the cellular community, and are growing out of control. Once a useful part of us, and still harboring our genome, these deranged cells have now mutated into our archenemy, hell-bent on destroying us. Left to their own devices—they will. They grow, forming an isolated local renegade community made up of malignant cells. This tumor can eventually send its cells through the bloodstream (we call this metastasis) to establish satellite communities at remote locations in other organs.

The disease we call cancer is actually a nano-scale war fought in each of us every moment of every day. We now know that we are all developing cancer cells all of the time, but that a healthy immune system devours them as fast as they are made. Anything that weakens the immune system can shift that delicate balance in favor of cancer, allowing it to grow.

Some important features of cancer cells

  • Cancer cells don’t stop reproducing - Unlike normal cells, cancer cells do not stop reproducing after they have doubled 50 or 60 times. This means that a cancer cell will go on and on and on doubling. So one cell becomes 2, then 4, then 8, then 16. The cancer cells may be able to stop themselves self -destructing. Or they may self -destruct more slowly than they reproduce, so that their numbers continue to increase. Eventually a tumor is formed that is made up of billions of copies of the original cancerous cell. Scientists describe cancer cells as being ‘immortal’.
  • Cancer cells don’t obey signals from other cells - Something in the cancer cells overrides the normal signaling system. This may be because the genes that tell the cell to reproduce keep on and on firing. Or because the genes that normally tell the cell to stop reproducing have been damaged or lost. So the cancer cell keeps on doubling, regardless of the damage the extra cells cause to the part of the body where the cancer is growing.
  • Cancer cells don’t stick together - Cancer cells have lost the molecules on their surface that keep normal cells in the right place. So they can become detached from their neighbors. This phenomenon also helps explain how cancer cells spread to other parts of the body.
  • Cancer cells don’t specialize; they stay immature - Unlike normal cells, rather than maturing, cancer cells become more and more primitive (we call this undifferentiated) and tend to reproduce ever more quickly and haphazardly.

The cancer army

To prevent bumping into one another, normal healthy cells regulate their growth rate by communicating with neighboring cells via a mechanism called “cell recognition” in which each cell sends out multiple chemical messages in an ongoing biochemical “conversation”—a heated discussion about who gets to grow (or do other things cells do), and when. There is an etiquette all cells subscribe to, and this very civilized molecular exchange definitively settles matters to everyone’s satisfaction. Cancer cells, however, have “opted out.” They no longer agree to do this. They no longer feel the need to work out an agreement about territorial issues. They want it all now, and refuse to stop growing. Having regressed to barbarians, they just push everyone else aside. It’s what would happen if a group of complete social idiots crashed a civilized dinner party, elbowed the guests aside, and started grabbing all the food for themselves. Respect for the rules that govern cooperative society is not on their radar. Say hello to the cancer army.

The cancer army’s most effective weapon—by far—is Nagalase, an enzyme made by all cancer cells (and viruses) that shuts down GcMAF production, thus disabling the entire immune system. Macrophages need to be “activated” by GcMAF; without it, they just can’t fight. By blocking GcMAF production, Nagalase effectively cripples the immune army by putting its soldiers into a deep sleep. (Later on, I’ll be going into much greater detail about how this all works.)

Your immune army

Your body also has an army. It’s made up of your fearless immune cells, ready to square off against the cancer army and wage a protracted war. Each side’s fighters can number in the hundreds of billions, but the battle itself consists of hand-to-hand combat between individual macrophages and cancer cells in a battle to the death. The macrophages attack and engulf (phagocytize) the cancer cells. The cancer cells are trying to grow as fast as they can, while preventing the macrophages from killing and eating them.

Macrophages are the principal cellular soldiers of our human immune army. They exist to protect and defend us from threats like cancer. Stationed at critical strategic locations around your body (and embedded in every tissue type), these cellular behemoths stand guard, ready to deploy sophisticated weaponry should an invader—a virus, bacteria, fungus, toxin, or allergen—or a cancer cell—dare to …er, … invade.

As cells go, macrophages are massive: roughly 30 times the size of an average body cell. If a cancer cell were the size of a motor scooter, a macrophage would be bigger than an 18-wheel semi. But this would be no ordinary truck. More like a Sherman tank, the macrocyte comes armed to the teeth with a multiplicity of nasty weapons. It also knows how to tell friend from foe—and if you’re foe, prepare to be more or less instantaneously liquidated.

In their quest to kill cancer cells and HIV virions, macrophages aren’t shy about deploying their array of high-tech devices. They extrude clusters of long skinny powerful octopus-like arms that grab onto and then drag their victim in, whereupon they surround, engulf, and digest it. They emit free radical rays that fry the outer cell membranes of cancer cells and microbes they’ve tracked down. Then they casually spit out the dead parts and move on to the next cancer cell, bacteria, or virus.

Utilizing sophisticated surveillance and communication systems, macros exchange complex messages with B and T lymphocyte cells. Outgoing messenger molecules tell lymphocytes where and how to aim their antibodies and inflammatory responses, and incoming messages help the macros zero in on the enemy, providing specific directions about where and how to direct their intimidating weaponry.

How macros tell friend from foe

Because it is very important that these killing machines not accidentally attack our own cells (“friendly fire”), they are equipped with a system for distinguishing “self” from “other.” It’s an ID check, not unlike like police use when they inspect a driver’s license at a routine traffic stop. First the macrophage sends out a “cell extension,” a long protoplasmic arm that wraps around potential targets (which are often identified by a cloak of sticky IgG antibodies), putting them into a strong “headlock.” The arm then contracts a little, pulling the intruder closer, in order to be able to “frisk” it. (Like a cop grabbing a fleeing suspect.) “Self”-cells have a molecular surface protein (their “drivers license”) that tells the macrophage, “Friend here; please let go of me.” The macrophage responds by switching off the headlock, allowing the self cell to move on. Foreign cells, i.e., those without the protein “license,” suffer the ignominious fate of being not just apprehended, but also summarily eaten alive. No ticket, no trial, no judge, no jury; this is raw cellular vigilante justice.

Imagine, if you can, literally billions of these macrophage war machines simultaneously tracking down, apprehending and dispatching malignant cells inside of a cancer patient.

The outcome of this microscopic war will be decided by one simple strategic fact: whether or not the cancer army can successfully incapacitate our macrophage soldiers, because if this happens, the cancer will prevail.

Macrophages are cunning and scary—but naturally indolent

Macrophages are the ultimate fighting machine. But they are not actually a machine: they are alive; they “think;” they make well-informed decisions. Each possesses a copy of your DNA, complete with all 25,000 (or so) genes, and this means they have the capacity to synthesize tens of thousands of chemicals—whatever they need to fight the war.

But, as we shall see in a moment, macrophages are natural slackers; without a kick in the derriere, they’ll stay asleep. That kick, the motivation to get up and get going, comes in the form of GcMAF, a protein synthesized by our lymphocytes. GcMAF attaches to receptors on the surface of the macrophages and sends a powerful message: “Get to work … NOW!!!”


Two macrophages ( left, brown) ensnaring bacteria (blue) in their long pseudopods. (Encyclopedia Britannica)

Nagalase (made by cancer cells and viruses) puts macrophages to sleep

The main weapon deployed by cancer cells and virus particles to sabotage our macrophage-driven immune response is an enzyme with a tongue-twisting name: alpha-N-acetylgalactosaminidase. We call it Nagalase for short. Nagalase defeats our immune system by blocking GcMAF production. Without GcMAF, macros remain comatose. Without macrophages to stop them, pathogenic invaders can grow at will. With Nagalase on their side, cancer cells and viruses will multiply and they will spread. In chapters 9, 10, and 11 I’ll explain how Nagalase accomplishes the remarkable feat of outmaneuvering and zombifying our otherwise intimidating macrophage warriors.

Macrophages remain idle without GcMAF activation

In order to realize they are supposed to go out and destroy cancer cells, macrophages must be “activated.” GcMAF (stands for glycoprotein macrophage activating factor) is our bodies’ principal macrophage activating factor. GcMAF is a protein that is made and released into the bloodstream by your T and B lymphocytes. Macrophage surface receptors monitor incoming chemical messages, patiently waiting for specific orders to activate. Much as a tiny key fits into a very small lock, GcMAF molecules locate and lock onto specific GcMAF receptors on the outer surface of your macrophages. Inserting the key (GcMAF) into the lock (GcMAF receptor) unleashes a powerful alarm that is instantaneously heard everywhere inside that cell (even though the cell is millions of times larger that the GcMAF molecule!) Though there are some weaker chemical messengers that can give a little nudge toward activation, when GcMAF comes along, macrophages really pay attention. With volume turned all the way up, GcMAF shouts, “”Get going!!!! Track down and kill all cancer cells. Kill all viruses!!! DO IT NOW!!!” It’s kind of like a drill sergeant barking commands in boot camp. Or agent Jack Bauer mobilizing Counter Terrorist Unit field operations in “24.”

Based on size alone, this Lilliputian GcMAF dictator has more power than the director of the FBI or CSI. And the “signal” is not a request; it’s a command. This is power and leverage—like the single switch that turns on all the lights in a football stadium. When GcMAF talks, macrophages listen.

When a macrophage is under the control of GcMAF, its activity level increases by a factor of 30. If it were an automobile, the macro would accelerate from 5 to 150 miles per hour. But we’re not just talking velocity here; we are, more importantly, talking about an explosion of activity. The safety is off; “Big Mac” is now armed, ready to do battle, and actively seeking engagement with the enemy. The rate at which this now activated macrophage can seek, grab, and phagocytize alien life forms (and other nonliving foreign intruders, like toxins and allergens) is awe-inspiring.

GcMAF bypasses Nagalase and re-activates macros.

Once activated by GcMAF, macrophages morph into relentless killers. But when de-activated by Nagalase, they slow to a crawl and refuse to deploy their awesome array of weaponry They start losing the war on cancers and microbes. If macrophages remain deactivated, the patient will eventually die. Injecting GcMAF bypasses the production blockage, and re-activates the macros.

The following charts from Dr. Yamamoto’s early metastatic cancer and HIV studies illustrates how GcMAF injections bypass the Nagalase production blockage and cure cancer. Patients received weekly injections of 100 nanograms of GcMAF. The GcMAF-activated macrophages destroyed the pathogens (cancer cells and virus particles), thus lowering the amount of Nagalase they make. Weekly Nagalase reaches healthy control levels in all cases, indicating the patients are cured.

Copyright © 2010 Timothy J. Smith, M.D.