The GcMAF Book (2.0)

Chapter 20

Why Not Skip Conventional Cancer Therapies and Just Take GcMAF?

Why not just skip the surgery, radiation, and chemo and use GcMAF all by itself?

Some cancer patients—in the hopes of sidestepping the slash, burn, and toxic discomforts of surgery, radiation, and chemotherapy—might consider opting for GcMAF therapy all by itself. If GcMAF works, they ask, why bother with the nasty stuff?

Not so fast. For most cancer patients this certainly would be a very bad idea. Here’s why: GcMAF works better on smaller tumors. Despite the many drawbacks of the “big three,” they all reduce tumor mass. The basic idea here is that activated macrophages gobble up cancer cells, but—as with your lunch —the less you have to eat, the quicker and easier you can finish the meal. And just as there is an upper limit to the size of a meal you could consume, there is likewise a limit to the amount of tumor material even the most aggressively activated macrophages can polish off.

Think about it: the bigger the mess, the more sponges you’d need to clean it up. Same’s true for cancer. Surgery, radiation, and chemo all diminish the size of the tumor and/or its metastases (this is called “debulking”). Smaller tumors are easier targets for the GcMAF-activated macrophages because with fewer cancer cells to devour, their workload is lightened. So, you cancer patients dreaming of a quick, simple, easy cure, listen up: avoiding the recommended conventional treatments for your cancer would not be a wise move. Using GcMAF on a debulked, smaller tumor may make the difference between cure and no cure.

Another faulty line of reasoning might go something like this: “I could try the GcMAF alone, and if it doesn’t work, then I can still go back and do the surgery, chemo, and/or radiation.” This approach might prove foolhardy because waiting could allow cancer growth beyond the point at which it is still reversible. Again, it’s best to go with the “debulk first” strategy.

Dr. Yamamoto debulked first

It was no accident that Dr. Yamamoto chose to limit his groundbreaking human research to cancer patients who had recently received optimum “debulking” procedures. Each of the breast, prostate, and colorectal cancer patients to whom he administered GcMAF had recently completed the appropriate mainstream course of treatment for their cancer. Surgery, radiation, and/or chemo (in whichever combination was indicated in that particular patient’s cancer) had been done. Because these patients still had elevated Nagalase levels, he knew they had metastatic disease. The conventional therapies had not cured them. The patients had, however, been “debulked,” and this made a huge difference in the ability of the GcMAF to do its job. Yamamoto thus proved that combining mainstream debulking therapies with GcMAF could produce a cure in 100% of early metastatic cancer patients in whom the conventional therapies alone had failed.

Had Yamamoto chosen identical patients (in terms of cancer type and stage) and administered the GcMAF prior to the conventional therapies, he almost certainly would have had some failures. Had he waited months or years for these uncured cancer patients’ tumors to return (to “re-bulk,” as it were), again, his cure rate would certainly have been lower. Debulking works, is an important feature in the curative process, and should not be avoided or delayed in the hopes that GcMAF will accomplish the job all by itself. One who proceeds down this avenue risks losing the chance at a cure that early debulking therapies—followed by GcMAF—might have provided.

Reducing viral “load” in HIV

The above logic also applies to HIV. Using appropriate drug cocktails to reduce HIV viral load will give GcMAF a big head start in terms of devouring the remaining viruses, and this could make the difference between cure and no cure, between life or death. (Because protease inhibition might interfere with GcMAF effectiveness, it will probably prove necessary to discontinue protease inhibitors while on GcMAF therapy. HIV patients—once GcMAF is available—will need to discuss these concerns with their physician.)

The exception to the debulking requirement: early cancers too small to image

In the earliest stages of cancer, when the mass is still very small (< 5 mm), the “debulk first” requirement does not hold. If a patient knows from an elevated Nagalase level that he or she has a cancer growing somewhere, but it is not big enough to be seen on imaging and there are no localizing tests like a positive PSA (prostate), BrCA1 or 2 (breast), or CA-125 (ovarian) to identify its whereabouts, then using GcMAF alone would be advisable. If, over time, the Nagalase (or AMAS) levels drop back to normal, one can assume the cancer was “nipped in the bud,” cured before it got big enough to be seen on imaging. If I had a tumor that was big enough to see on imaging, however, I’d want a surgeon to take it out. I’d still use GcMAF (if it were available), just in case the surgeon didn’t get it all.

Since Nagalase testing is not yet available, using it to find cancer early remains a purely theoretical notion. Meanwhile, AMAS testing can be used to detect early cancers and to track cancer therapy.

“How can I treat it I can’t see it?”

Some physicians find it disturbing to be treating an “invisible” disease that has no symptoms, no physical signs, and even eludes state-of-the-art imaging. These old-schoolers remain hesitant to treat if they cannot make a formal diagnosis using the tools they understand best. Fear not, this is an outmoded, vanishing breed that in the age of molecular and genetic medicine is headed for extinction.

Biochemical testing provides powerful assistance in diagnosing the earliest signs of many disease states. My book Outsmarting The Number One Killer (http://www.renewalresearch.com/tnok/TNOK-text.pdf and slide show summary at http://www.renewalresearch.com/tnok/TNOK.pdf) explains how to use molecular markers to identify and reverse risk of heart attack and stroke. Now, with Nagalase testing, we have a tool for very early detection of cancer, the number two killer.

Using state-of-the-art biochemical markers, the molecular medicine early warning system enables earlier diagoses. Detected in its infancy, a developing disease can usually be reversed using non-toxic nutritional medicines (diet, phytonutrients, herbs. vitamins, minerals, amino acids, essential fatty acids, hormones, enzymes, and homeopathic medicines). Once the disease has progressed to a heart attack or large tumor, however, reversal becomes far more difficult, natural medicines are less often an option, and the need to resort to strong drugs looms large.

So here’s my unsolicited advice to those doctors who would resist identifying and treating the earliest manifestations of disease: study molecular biology and natural healing methods. Good things will happen!

Copyright © 2010 Timothy J. Smith, M.D.